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Abstract  

We develop a procedure to design complex tubular branched tangle structures based on curved and branched carbon 
nanotubes (CNTs). A curved CNT is obtained by mitering CNT segments, and a branched CNT can be generated 
by puncturing a generic fullerene in line with its specific symmetry. With curved and branched CNTs as basic 
building blocks, we can construct a wide range of hypothetical molecular structures with arbitrary space curves 
based on CNTs. Following the procedures given above, we show CNT versions of Bathsheba Grossman’s Metatron 
and Metatrino sculptures and present the corresponding beaded model of Metatrino. 

 
Introduction 

Ora, Metatron, Metatrino, Quintron, and Quintrino are mathematical sculptures designed by Bathsheba 
Grossman. They are orderly branched tangles with regular polyhedral symmetries [2]. The Metatron and 
Metatrino can be viewed as a cube and a regular octahedron, respectively, and are the dual of each other. 
Similarly, the Quintron and Quintrino belong to the dodecahedron and icosahedron categories. Ora, 
analogous to a regular tetrahedron, is self-dual. In these mathematical sculptures, the faces of parent 
polyhedra are converted to branched nodes (face nodes), which are then connected to the vertices on the 
original faces, also converted to branched nodes (vertex nodes). The number of edges is doubled under such 
operation and the links between the face and vertex nodes are curved to avoid the interpenetration. 

Considering the geometry of these sculptures which bear some resemblance to our previous works on 
the CNT based polylinks [3], we ask a question about the possibility of creating a graphitic representation 
of these orderly branched tangles designed by Bathsheba Grossman by decomposing the complex structures 
into two basic units: the branched and curved tubular joints. The present article is organized in the following 
manner. Firstly, we establish the construction scheme for curved CNT by systematically mitering mirror-
image CNT segments. Secondly, we demonstrate the approach to generate branched CNT by puncturing 
fullerenes, the spherical counterpart of CNT. Finally, the curved and branched CNTs are integrated to build 
the branched tangle structures. 

 
Curved Carbon Nanotube 

In our previous work in Bridges [3], we demonstrated that we could make a bent tube by mitering the 
mirror-reversed (𝑛,𝑚)-(𝑚, 𝑛) CNTs, where (𝑛,𝑚) is the chiral vector of a CNT. The bending angle of 
CNT depends on the chiral vector [5]. This is illustrated in Fig.1, where a (2,5)-(5,2) bent CNT is 
represented as a band of honeycomb lattice with a pencil-shape cutout (left shaded area). The 3D structure 
of the bent CNT can be obtained by joining the two sides of the cutout as well as the top and the bottom of 
the band, essentially creating a dislocation at the center of the cutout area. This corresponds to introducing 
a pentagon-heptagon pair in the honeycomb band which would otherwise be a straight tube when joined. 
Furthermore, we can miter bent CNT consecutively to get a CNT resembling an arbitrary space curve [6]. 
To do so, we start by introducing a second dislocation as shown in Fig.1(a) (right shaded area). Apparently, 
the placement of the second dislocation is not unique. We could shift the second dislocation to alter its 
relative position, making the second bend at an angle with respect to the first one. The arrows in Fig.1(a) 
indicate a set of possible shifts, and the shifting procedure is parametrized by a pair of integers (𝑣𝑠, ℎ𝑠), 
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see [3] for a detailed description. From the aspect of tubular structures, the shifting of dislocation results in 
torsion (dihedral angle rotation) and change of separation between adjacent corners. Since curvature 
(bending) and torsion (dihedral angle rotation) are the fundamental properties of space curves, we can 
simulate a wide range of space curves based on CNT by systematically shifting each segment, as shown in 
Fig.1(b) [6]. 

 

 
Figure 1:  Diagrams that represent consecutive junctions of bent CNT  which change the relative 

positions of adjacent dislocations and the outcoming curved CNT. (a) The second dislocation is placed 
next to the first one with the tip pointing down. The black dot 𝐻 indicates the position of the heptagon, 
and the arrows imply practical shifting directions. (b) A curved CNT from consecutively mitering CNT 

segments. The dihedral angle between the corners is specified by the relative position of adjacent 
dislocations. 

 
It is useful to estimate the dihedral angle of a given (𝑣𝑠, ℎ𝑠) pair. Empirical results indicate that the 

dihedral angle between CNT junctions with (𝑣𝑠, ℎ𝑠) = (1,0) is approximately 𝜋 regardless of the chiral 
indices (𝑛,𝑚) of the tube. Based on this observation, we start by drawing the projection of the CNT axis 
on the honeycomb band (blue line in Fig. 2) that is perpendicular to the circumference vector (thick black 
line) of length 𝐷. The blue line passes through (1,0), indicating that all lattice points (𝑣𝑠, ℎ𝑠) which are on 
the line give rise to a dihedral angle of 𝜋 between the two bends. For other cases the dihedral angle 𝜙 
deviates from 𝜋, with the magnitude of the deviation proportional to the ratio between the point-line 
distance 𝑑 and the circumference 𝐷 

𝜙 = 𝜋 ൬1 − 2
𝑑

𝐷
൰, 

where the factor of two comes from the periodic boundary condition across the band (the top and the bottom 
horizontal lines).  

The bending angle and the dihedral angle are defined by (𝑛,𝑚) and (𝑣𝑠, ℎ𝑠) respectively. One can 
therefore build a specific discrete curve on demand through searching the space of these discrete parameters. 
 

 
Figure 2:  Diagram of the dihedral angle of certain (𝑣𝑠, ℎ𝑠) pair. The blue line is the projection of the 

corresponding CNT axis passing through (𝑣𝑠, ℎ𝑠) = (1,0), the case where the dihedral angle is 𝜋. 
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Branched Carbon Nanotube 

The previous work by Jin et al. [4] demonstrates that a branched CNT junction can be obtained by 
puncturing holes on a fullerene (a polyhedron with pentagonal and hexagonal faces) and joining them with 
tubes of suitable radii. Following that work, we first choose a particular fullerene based on the symmetry 
requirement of the branched CNT. For instance, to get a triply branched CNT as shown in Fig.3(d), we start 
from the fullerene in Fig.3(a) with threefold rotational symmetry. We identify the locations (the red dots) 
from which the tubes emerge. The red dots are then eliminated to prepare for the junction of tubes, as shown 
in Fig.3(b) and Fig.3(c). Finally, we obtain a triply branched CNT in Fig.3(d) with threefold rotational 
symmetry. Following similar steps, we can generate a hollowed quadruply branched CNT in Fig.3(f) from 
puncturing the surface of a fourfold rotational symmetric toroidal carbon nanotube in Fig.3(e) [1]. 

 

                      

(a)                           (b)                         (c)                            (d)  

             
(e)                                                     (f) 

Figure 3:  The process of constructing a triply branched CNT starting from a fullerene. (a) A fullerene 
with threefold rotational symmetry. (b) The fullerene is punctured with red dots on (a) eliminated, which 
are the locations where CNT emerges. (c) CNT with a proper radius is joined onto the hole, with each 

vertex remaining connected to three other vertices. (d) The resulting triply branched CNT with six 
heptagons (blue). (e) A toroidal CNT with fourfold rotational symmetry. (f) The corresponding hollowed 

quadruply branched CNT. 

 
Complex Space Curve Design with CNT 

With curved and branched CNT as building blocks in hand, we can construct diverse designs of tubular 
structures by combining them systematically. Here, we demonstrate our designs of Bathsheba Grossman’s 
Metatron and Metatrino sculptures based on this strategy. The hollowed quadruply and triply branched 
CNT in Fig.3 are respectively used as the face and vertex nodes, and they are linked with curved CNT. The 
basic unit of the complex structure is shown in Fig.4(a), which is composed of a triply branched CNT, a 
segment of curved CNT, and a hollowed quadruply branched CNT. The rendering CNT structures of 
Metatron and Metatrino are shown in Fig.4(b) and Fig.4(c), and Fig.4 present the beaded model of Metatrino, 
which took us about 50 hours to construct. 
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(a)                             (b)                                    (c)                                                    (d)          

Figure 4:  (a) The basic unit of the complex structure. (b) The CNT versions of Bathsheba Grossman’s 
Metatrino (top) and Metatron (bottom) sculptures viewed from the 4-fold axis. (c) The CNT versions of 

Bathsheba Grossman’s Metatrino (top) and Metatron (bottom) sculptures viewed from the 3-fold axis. (d) 
The beaded model of the Metatrino based on CNT. 
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